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The refined problem of the spreading of steady-state boundary operating conditions in an 
orthotropic strip is solved. The refinement in this problem involves allowance for the shear 
and compression in the orthotropic layer. The theoretical estimates obtained for the zone of 
penetration of the edge effect are compared qualitatively with the results of experiments per- 
formed on composite rods. 

I. Analysis of Longitudinal Vibrations of an Anisotropic Strip. Consider the equations 
of the dynamics of an elastic orthotropic strip in the case of two-dimensional strain [i, 2], 

O~ ~ ' 
(i.l) 

with the following boundary conditions at the side surfaces of the strip and at the end-face: 

(~y = O, T ==- 0 for  y == --1;  t ,  

a.~ =: o ~  t) ,  T - -  .~O(y, t) f o r  x .= O, 
( 1 . 2 )  

while the stresses Ox, Oy, and �9 are calculated by means of the expressions given in [3]. Here, 
U and W are the displacements along and across the layer; El, E2, and G are the elasticity 
moduli; v I and ~2 are the Poisson brackets; p is the reduced density of the material, and 
c ~ [Ea/9(I -- v~v~)]I/2 is the reduced rate of disturbance propagation in the direction of the 
x axis. The measurement units are the following: 2h is the plate thickness, �9 is the time 
during which a perturbation at the x = 0 section traverses a distance equal to h: tl = tc/h, 
x I = x/h, and Yl = y/h. The subscript i will be subsequently omitted. 

We shall reduce the problem (i.I), (1.2) to a one-dimensional problem. We expand the 
displacements U and W in series with respect to Legendre polynomials Pi(Y) [2]. We multiply 
the equations of system (i.i) and the boundary conditions (1.2) by the Legendre polynomials 
and perform integration along the plate thickness. In performing integration by parts of rela- 
tionships (i.I), we use the conditions at the side surfaces (1.2). Using the well-known rela- 
tionships for Legendre polynomials, we obtain two infinite systems of equations (for an iso- 
tropic material, similar systems are given in [I], the first of which corresponds to the prob- 
lem of longitudinal vibrations, while the second pertains to the problem of flexural vibra- 
tions of the strip). We shall consider only the problem involving longitudinal vibrations 
for steady-state boundary operating conditions. In the expansion 

~ 2i -{- | ~ 2i -{- 1 U = ~ U~ (x, t)/'~ (0 ,  W = W~ (z, t) P~ (u) ( 1 . 3 )  

we retain the approximation which accounts only for the functions U0, WI, and U 2. In our case, 
the system of equations for longtitudinal vibrations of the strip assumes the following form: 
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Fig. 1 

O'ZUo _ OW~ O~'U~ = O, 
Ox~ + 3v2 7x Ot 2 

OU ~ 6 2 ~2W~ OU, ~ OZW~ O, 
a ~ - 8 7 - - -  - 0 2  ' - -  W i  + a~a ~ - -  a l  Ot ------~ = 

OW~ OZU~ o 02W 
a 3 2 ~  + ~.2 i)x 2 - -  Uo. + o~72-Ot 2 ---- O, 

(1.4) 

where a21 = --vl/3; a2s = 5G(I -- v iv2)/3E2; as2 = --1/5; 62 = G(I -- ~iv2)/3E2; ~2 = Ei/15G• 

(i -- ~iv2); a~ = EI/3E2; a~ = EI/15G(I -- DIM2). The boundary conditions for system (1.4) 

are 

I 

OU~ f O--x- + 3w2~V: = ~176 (y' t) Po (Y) du, 
- - 1  

1 t 

o~ + 5 U ~ =  ~ o ( y , t )  p ~ ( v ) @ ,  ~.~ = o 0 ( y , t )  p ~ ( y ) @ .  
- - 1  - - 1  

For  s o l v i n g  s y s t e m  ( 1 . 4 ) ,  we i n t r o d u c e  a r e s o l v i n g  f u n c t i o n  V(x ,  y ) ,  s u c h  t h a t  

(i.5) 

., OV ?J2V 32V 
Uo .= ~ 77-" W1 = c,,l 2 d r  2 

, [ ~4V (6 ~ + ,2", 0%" d"V J V  6. ~ V~V ,~ O"V ] ol.,~ t L o(~ ~ - ~ 2  ~ + + . 
(1.6) 

Then, the first and the second equations of system (1.4) are satisfied identically, while the 
third one yields for the resolving function V(x, t) the equation 

[ "(" ,) ,( , ,) 
~ o.? ~7 ~ ~.'-, o.~ ~"-i _ t - ~.;, ~ ,  (~ ~)~'-~ - 1 - ~ ~ v = o. 

(1.7) 

For steady-state excitation of vibrations, we shall seek the solution for the resolving func- 
tion V(x, t) in the following form: 

Vp, t) - A exp Ii(0ht -- k~)h  ( i . 8 )  

where  wl = wh/c  i s  t h e  d i m e n s i o n l e s s  f r e q u e n c y ,  and h i s  t h e  h a l f - w i d t h  o f  t h e  s t r i p .  The 
s u b s c r i p t  1 w i l l  s u b s e q u e n t l y  be o m i t t e d .  By s u b s t i t u t i n g  ( 1 . 8 )  in  ( 1 . 7 ) ,  we o b t a i n  t h e  
b i c u b i c  e q u a t i o n  

(k ~ - -  ~o ~) (~.~-~ + I - -  Wo~ 0 (~V: ~ + t - -  W~o 0 + 

+ 3~. , /~ (~v~ + J. - @ o 0  + ~%~k~ (k~-~o~)= o. (1.9) 
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By solving (1.9), we find the roots kl, 2 = • ks,4 = • and ks, 6 = • Then, the ex- 
pression for the resolving function V(x, t) for a wave propagating to the right (x > 0) is 
written thus: 

3 

V ( x ,  t ) =  E A ~ e x p l i ( ~ t - - ? ~ x ) t .  ( 1 . 1 0 )  
~i--I 

The amplitudes A n for steady-state boundary operating conditions at x = 0 are determined from 
boundary conditions (1.5). 

The procedure for determining the roots of the bicubic equation and subsequent analysis 
are simplified considerably if we put in the system of equations (1.4) the coefficients a21 = 
a32 = 0, whose absolute values are smaller than unity. By omitting terms with the coefficient~ 
a21 and a32 in front of the lowest derivatives, we do not change the type of Eq. (1.7); the 
solution obtained for the functions U0, Wl, and U 2 differs from the complete solution (1.6) 
by the terms with small parameters of the order of la211 and Ia321. In comparing the experimental 
and theoretical results, we shall perform below numerical calculations of U(x, t) with and 
without an allowance for the coefficients a21 and a32. 

Thus, putting a21 = a32 = 0 in Eq. (1.9), we find 

whence we immediately determine the roots of the equation 

1, ,2 : _ +  = + 6 - 

- -  1 2 ,) ~-~,~ -- _~_ ~ ( ~  - I)  ~j, 

The solution for the resolving function V(x, t) is given by 

V (x, t) = A 1 exp [ - -  io  (t - -  x)] + A s exp [ i~ t  - -  z ( t  - -  ~(0~) ' /2 /6]  + 

+ 4 x ( t  - 

The c h a r a c t e r  o f  t h e  s o l u t i o n  c a n  c h a n g e ,  a n d  d i f f e r e n t  v a r i a n t s  may a r i s e ,  w i t h  v a r i a t i o n  
o f  t h e  f r e q u e n c y  p a r a m e t e r  ~ .  We s h a l l  o n l y  c o n s i d e r  t h e  c a s e  w h e r e  ~ 2  < ! a n d  ~ 2  < 1 
( t h e  o t h e r  c a s e s ,  a ~ 2  > 1,  ~ 2  > 1;  ~ 2  < 1,  ~ 2  > 1 . . .  a r e  a n a l y z e d  i n  a s i m i l a r  w a y ) :  
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U o (x, t) = iA n exp [io)(t - -  x)] + Ava exp [got - -  x~ -~ ( t  --  =~o)')] + 

+ A,a exp [ i m t -  x s - ~ ( J -  a~(o")], 

w ,  (x, 0 = A.,= ~ p  [,o,t - ~ - *  (,  - =~,")]  + 4 =  ~xp[,,,,t - ~ - * ( ~  - =,Io,=)], 

U s (x, t) = Aa~ exp [imt - -  x~c -~ (1 --  ~z1(o~)]. 

(1.11) 

Here, the coefficients Aij depend on the frequency m. The solution for longitudinal vibra- 
tions was obtained in the form of three components: the solution of the transmitted-wave type 
with the amplitude All and solutions of the two edge effects, which are localized near the 
end-face to which the load is applied. The zone of penetration of the dynamic edge effect 
is determined by the parameters 6 and e. The smaller these parameters and the frequency, the 
closer to the strip's end-face the edge effect occurs, and vice versa. 

We shall now consider an anisotropic strip, to the end-face of which (x = 0) a steady- 
state dynamic load is applied over a section whose width is equal to 2b (Fig. i). We de- 
compose the load g of unit intensity which acts at the end-face of the strip into two com- 
ponents: o*, which is uniformly distributed with the intensity 8 over the entire width of 
the strip, and the self-balancing load a **. Then, in the absence of shearing forces T ~ 
with an allowance for the decomposition of the acting load a into the two components a * and 
a **, the boundary conditions (1.4) assume the following form: 

OU ~ . OW 1 OU,~ 
0---7' + 3v2W1 = %' WUx + 5U2 = O, ~ = %, ( 1 . 1 2 )  

where 
1 I 

~ =  ~ ~*&(y)dy ;  ~ =  ~ o*%(y)dy. 
--1 --1 

" For  d e t e r m i n i n g  t h e  c o e f f i c i e n t s  Ai i  in  Eqs.  ( 1 . 1 1 ) ,  we s u b s t i t u t e  t h e  r e s o l v i n g  f u n c t i o n  
V(x,  t )  in  ( 1 . 6 )  and ( 1 . 1 2 ) .  A f t e r  c e r t a i n  t r a n s f o r m a t i o n s ,  we o b t a i n  t h e  f o l l o w i n g  e x p r e s -  
s i o n s  f o r  A i j :  

A n = 3 v 2 [  ~2 563a~ ( ~ ( 1 - ~ 2 ) 1 / 2 k  
a%~ ~ d~ ~ + t - % ~ "  82y _~I~a)iI~ 

t~. a23('Y 2,~ ) ] 

~ 2 ] . g_ 

AI, = ~ ' 8 ' + ~ - ~ '  8 ~ ( ~ - ~ I ~ D "  ~ + 0 - ~ I ~ 2 ) ' z ' ( ~ - ~ I ~ )  '~  ' 

2 .~ I/2 

A,,a = a~a%lg'y,  Aaa, = "~g/a, ( 1 ~20J')ev2r' '/~11~ 

(1.13) 

In the approximation under consideration, where only the functions U0, Wl, and U 2 are 
taken into account, relationships (1.3) yield the following for longitudinal strip vibrations: 

U(x, g, t)---0,5lUo(x, t ) P o ( y ) +  2,SUJx, t)P~(g)]. (1.14) 

We substitute in (1.14) the expressions for the Legendre polynomials and the expressions 
for U0(x, t) and U2(x, t) from (i.ii): 

bT(x, y, t) --  0,5A H sin r --x) = /{(x, y) exp (imt), 

R(x ,  y) = 0,5 [A~ ~,xp [ - -  . 6 - *  (1 - -  

- -  ~ o , " ) ' " ]  + [A~ + 2,5 ( 3 r  ~)1 • 
Xexp [ - -  /g  -1 (~ - -  C%10)2)1/2] ]. 

(1.15) 
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The dynamic edge effect R(x, y) is determined by the right-hand side of relationship 
(1.15); it has exponential factors, which diminish the faster, the larger the values of 
8 -~ and e -~ become, as x increases. 

We introduce a zone of penetration of the dynamic edge effect q, such that 

: _ :  .v), 

h 13 ~ 313 ' 

AI~ -b Ala -i- 2,5Aaa (3gt z .... 1) 

(1 .16)  

Outside this zone, the edge effect R(x, y) is negligibly small in comparison with R(0, y): 
In practical calculations, it was assumed that ~ = 0.05, which was connected with the accu- 
racy in measuring the dynamic processes. 

For E >> 8, the value of q is determined by the relationship 

where 

A,a-{ 2,5Aaa(3Y ~--1) 

At~ -{- Aja -]- 2,5Aaa (3g e -- l)' 

2. Q u a l i t a t i v e  Compar ison be tween t h e  T h e o r e t i c a l  and E x p e r i m e n t a l  R e s u l t s .  We s h a l l  
compare t h e  t h e o r e t i c a l  e s t i m a t e s  o b t a i n e d  f o r  t h e  edge e f f e c t  zone ( 1 . 6 )  w i t h  t h e  r e s u l t s  o f  
e x p e r i m e n t s  p e r f o r m e d  on c o m p o s i t e  r o d s  [ 4 ] .  The f i e l d  o f  l o n g i t u d i n a l  s t r a i n  in  a mono- 
d i r e c t i o n a l  c o m p o s i t e  c o n s i s t i n g  o f  a s t e e l  rod  and an epoxy  b i n d e r  was d e t e r m i n e d  expe r imen-  
t a l l y  in  [ 4 ] .  A dynamic  l o a d  was a p p l i e d  t o  t h e  e n d - f a c e  o f  t h e  s t e e l  rod .  I n  a d d i t i o n  t o  
t h e  p u b l i s h e d  e x p e r i m e n t a l  r e s u l t s ,  we a l s o  p e r f o r m e d  a s e r i e s  o f  e x p e r i m e n t s  d i f f e r i n g  from 
t h o s e  in  [4] by t h e  method o f  l oad  a p p l i c a t i o n  t o  t h e  spec imen  (a c o m p r e s s i o n  p u l s e  was c r e a t e d  
in  t h e  s t e e l  r o d )  and by t h e  a r r a n g e m e n t  o f  t e n s o m e t r i c  s e n s o r s ,  which  were p a s t e d  a t  t h r e e  
l e v e l s  ove r  t h e  c r o s s  s e c t i o n  and t h e  l e n g t h  o f  t h e  c o m p o s i t e .  F i g u r e  2 shows t h e  a r r a n g e m e n t  
o f  t e n s o r s  o v e r  s e c t i o n s  a - c  and t h e  t y p i c a l  o s c i l l o g r a m s  o b t a i n e d  f rom t h e  t e n s o m e t r i c  s e n s o r s  
f o r  one o f  t h e  e x p e r i m e n t s  p e r f o r m e d  (1 ,  s t e e l  rod  w i t h  t h e  d i a m e t e r  d; 2, expoxy  b i n d e r ,  3, 
t e n s o m e t r i c  s e n s o r s ) .  The e x p e r i m e n t a l  r e s u l t s  i n d i c a t e  t h a t  t h e  a m p l i t u d e  o f  t h e  s t r a i n  p u l s e  
in  t h e  s t e e l  rod  d e c r e a s e s  in moving away f rom t h e  e n d - f a c e ,  w h i l e  i t  i n c r e a s e s  in  t he  b i n d e r .  
B e g i n n i n g  w i t h  a c e r t a i n  d i s t a n c e  x = q ,  f rom t h e  e n d - f a c e  x = 0, a c o n s t a n t - a m p l i t u d e  p u l s e  
propagates along the composite (along both the steel rod and the binder). We shall refer to 
the quantity q, as the experimental zone of penetration of the edge effect. Table 1 provides 
the geometric and rigidity characteristics of the composite rods and their components, as well 
as the measured zone of penetration of the edge effect q,. It should be mentioned that we 
addressed ourselves to the problem of determining the variation of q, over the cross section 
of the composite in the series of additional experiments, where the sensors were arranged in 
three sections. However, the scatter of experimental data and the spacing in the arrangement 
of the sensors did not make it possible to determine the character of this variation with a 
sufficient degree of accuracy. 

The rule of mixtures [5] was used for determining the average values of the character- 
istics El, E2, G, vl, and v 2 of the specimens tested. For determining ~ (the excitation 
frequency), we choose a characteristic time during which the strain changes considerably 
in experiments, and we identify this length of time with the half-period of a certain steady- 
state, dynamic action, the choice having been made at a location sufficiently remote from the 
composite rod's end-face, where any dynamic edge effect has vanished. Table 1 provides the 
estimate of ~ for each experiment and the results of theoretical calculations and experiments. 
The following values were used in calculations: Pc = 1.2 g/cm 3 for the resin; Pa = 7.8 g/cm 3 
for steel; E a = 2.1.10 s MPa. Here, E c is the elasticity modulus of the resin, X is the volu- 
metric percentage of steel in the composite rod, q0 is the theoretical value of the edge effect 
for a21 = a32, ql is the same, but with an allowance for the coefficients a21 and a3~, and q, 
is the experimental value of the edge effect. The difference between the values of q0 and ql 
increases with the coefficient a21 , which is determined by v2. With an increase in v 2 from 
0.03 to 0.25 in our calculations, the difference between q• and ql increases from 3 to 30%. 
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For clarity, the theoretical and experimental values of the edge effect are shown in Fig. 3, 
where 1 is the experimental value of q,, 2 is the theoretical value of q0, and 3 is the 
theoretical value of ql for a21 # a32 # 0. 

Analysis of the results obtained indicates that, with an increase in the anisotropy 
parameter El/G, the zone of penetration of the edge effect increases, but the numerical 
values of q and q, vary in both the experimental and the theoretical results. The experi- 
mental values of q, exceed the theoretical values by a factor of 1.2-1.6. 

Returning to the problem under consideration and a qualitative comparison between the 
theoretical calculations and experimental results, we should mention that this comparison is 
not quite correct. First, the load used in experiments was not taken into account in calcula- 
tions. Second, the calculations were performed for two-dimensional strain, while axisymmetric 
loading was used in the experiments. In the third place, the proposed theory does not reflect the 
strongly pronounced structure of the specimens tested. However, there was a qualitative agree- 
ment between the proposed theory for determining the depth of penetration of the edge effect 
and the experimental results. The theoretical results and the experimental data both indicate 
that the zone of the edge effect increases with the anisotropy parameter EI/G. 

LITERATURE CITED 

i. L.I. Slepyan, Transient Elastic Waves [in Russian], Leningrad (1972). 
2. V.M. Kornev, "Refined theories of the extension and bending of orthotropic fittings," 

in: Dynamics of Continuous Media [in Russian], Vol. 51, Collection of Scientific Papers, 
Institute of Hydrodynamics, Siberian Branch, Academy of Sciences of the USSR (1982). 

3. S.G. Lekhnitskii, Anisotropic Plates [in Russian], Moscow--Leningrad (1974). 
4. A.G. Demeshkin and V. M. Kornev, "Propagation of strain pulses along composite rods," 

Mekh. Komposit. Mater., No. 1 (1984). 
5. A.K. Malmeister, V. P. Tamuzh, and G. A. Teters, Strength of Rigid Polymer Materials 

[in Russian], Riga (1972). 

280 


